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Abstract

The major contribution of this paper is to explicitly model the persis-
tence in the time series of expected returns. The series of expected returns
is derived from a state space representation of the present value identity
relating expected returns and expected dividend (earnings) growth to the
observed price dividend (earnings) ratio. The state space model is ad-
justed in order to include the possibility of expected returns following an
autoregressive fractional integrated (ARFIMA) process which captures the
persistence of the process. The new ARFIMA model performs moder-
ately compared to the simple autoregressive process, which may be due to
the presence of different regimes and structural breaks. The expected re-
turns series is used in three applications namely in predictive regressions,
analysing the relationship between consumption and discount rates and
also in a market timing strategy.
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1 Introduction

In a recent paper, Koijen and Van Binsbergen (2010), hence KVB, find high per-
sistence and near unit root properties in the expected returns series for the S&P
500. In their setting, the expected returns is derived from a state space model where
expected returns and the expected dividend growth (both unobservable series in real
time) are filtered from the present value relation and observed dividend growth. They
assume that expected returns follow an autoregressive process of order one (AR(1)).
In this paper, I attempt to model explicitly the persistence in the expected returns
by assuming that the series follow an autoregressive fractionally integrated process
(ARFIMA (p,d,q)). The latter is a process that accounts for the possibility of a series
having long memory or long range dependence. The reduced form of the model con-
sists of two measurement equations and one state equation. The model, optimized
from S&P 500 data, yields a series for expected returns and expected dividend (earn-
ings) growth rate. Robustness checks are performed by optimizing over two samples
in time. Tests of long memory and time variation are performed on the filtered se-
ries. As a by-product of the procedure, the expected returns and expected dividend
(earnings) growth rate are used as predictors for realized returns and observed div-
idend (earnings) growth rate. The relationship between consumption and expected
returns is also investigated. Finally, the expected returns and expected (earnings)
growth rate is used in the present value formulae to test whether a successful trading
strategy may have been implemented by identifying whether the equity index is over
or under priced.

Applications of state space models have recently been popularized in the asset
pricing literature to derive series for expected returns or expected dividend growth,
both of which are typically unobservable to the econometrician. The application has
taken two avenues of thinking with the first one focussing more on the economet-
ric properties of the data (see Conrad and Kaul (1988), Brandt and Kang (2004),
and Pastor and Stambaugh (2009). The second avenue involves deriving the unob-
served series through a more structural approach where the present value relation
between the dividend price ratio, expected dividend growth and expected returns
hold (Rytchkov (2007), Cochrane (2008), Koijen and van Binsbergen (2010)). I pro-
vide a brief summary of these studies. Conrad and Kaul (1988) apply the Kalman
Filter to extract expected returns from the history of realized returns. The objec-
tive was to attempt to characterize the random nature of expected returns and test
whether the latter was constant. Brandt and Kang (2004) investigated the rela-
tionship between expected returns and volatility. They model conditional mean and
volatility of returns as unobservable variables which follow a latent VAR model and
filter them from observed returns. In the same line of thinking, Cochrane (2008)
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shows that the present value VAR model can be represented in state space form.
Pastor and Stambaugh (2009) use the Kalman Filter to analyze the correlation be-
tween predictors and expected return in the forecast of returns. Koijen and Van
Binsbergen (2010) use the state space model to model the dynamics of cash invested
and market invested dividends.

ARFIMA (p,d,q) models are specifications of time processes where a fractional
order of integration is involved, usually defined by the ‘d’parameter. As such it makes
the distinction between the short range components (p and q) and the long range
(d). When 0<d<0.5, the model is said to exhibit long memory, and is stationary.
By differencing the process d times, the process becomes a stationary I (0) process,
with no memory. An important advantage of this transformation is that it provides
stronger consistency results for tests on the I(0) series. An interesting overview of
such processes is available in Beran(1994).

One of the main properties highlighted by the studies on expected returns is that
they exhibit high persistence (Campbell (1991), Rythchkov(2006), Koijen and Van
Binsbergen (2010). In KVB, expected returns, when modeled jointly with expected
dividend growth , exhibits long memory, and most importantly non stationarity1.
This paper derives the empirical series of expected returns and dividend growth rate
assuming explicitly that the expected returns series might possess long memory. We
reproduce the results of KVB for comparison with the ARFIMA model. Our model
specifically studies the case of an ARFIMA (1,d,0). The expected returns, which is
fractionally integrated, can be represented as infinite process in the time series model
(Chan and Palma (1998)). They show that series that exhibit long memory may have
a finite representation where the exact likelihood can be computed recursively using
the Kalman Filter. The log likelihood function of the Kalman filter is optimized to
the current data set to yield the optimal parameters of the present value.

The present value approach identifies only one measurement (observed) variable
which is the price dividend ratio. To counter the identification problem, the observed
dividend growth may be used as another measurement equation. A potential problem
encountered when using dividend growth and the price dividend ratio is that it may
not be fully representative of payoffs in the presence of share repurchases. In this
case, I amend the Campbell and Shiller(1989) equation by using the price earnings
ratio and earnings growth in the present value relation. Two different samples are
used to check for the robustness of our result. In a nutshell, I estimate the model for
both the AR(1) and ARFIMA(1,d,0) using both dividend and earnings data for the
time periods 1926-2008 and 1946-2008.

1The study found that the autoregressive parameter is 0.932 with a standard error of 0.128. It should be noted
that the Kalman Filter still works in the presence of unit roots. (See Brockwell and Davis 1991)
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The remainder of the paper is organized as follows. Section 2 and 3 derive the
present value model under an AR(1).and ARFIMA(p,d,q) respectively. Section 4
describes the data set and the results. Section 5 checks the robustness of the results
and performs tests of persistence and time variation. Section 6 looks at some of the
applications of the derived series. Section 7 concludes.

2 Present Value assuming an AR(1)

2.1 Present Value

In this section, the present value relationship between the price dividend ratio, ex-
pected returns and expected dividend growth is derived. I first define the key vari-
ables of the present value.
Let the rate of return be:

rt = log(
Pt+1 +Dt+1

Pt
) (1)

Let the Price Dividend ratio at time t be:

PDt =
Pt
Dt

(2)

Let the Dividend Growth from time t to t+1 be:

∆dt+1 = log(
Dt+1

Dt

) (3)

One of the important assumptions that we put forward for the process of ex-
pected returns and dividend growth concerns the order of the process. The mean
adjusted conditional expected returns and dividend growth rate are modelled as an
autoregressive process as in equations 4 and 5 respectively :

µt+1 − δ0 = δ1(µt − δ0) + εµt+1 (4)

gt+1 − γ0 = γ1(gt − γ0) + εgt+1 (5)

where µt = Et(rt+1) and gt = Et(gt+1)
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Equation 4 and 5 relates to the mean deviation of the expected returns and
expected dividend growth rate where δ0 and γ0 characterize the unconditional mean
of the expected returns and dividend growth respectively. δ1 and γ1 represent the
autoregressive parameters. εµt+1 and ε

g
t+1 are the shocks to the expected returns and

the dividend growth rate processes. The shocks are normally distributed:

εµt+1 ∼ N(0, σ2µ) and εgt+1 ∼ N(0, σ2g).
However, no restriction is placed on the covariance between εµt+1and ε

g
t+1.

The realized dividend growth rate is defined as the expected dividend growth rate
and the unobserved shock εdt+1, where by :

∆dt+1 = gt + εdt+1 (6)

εdt+1 and gt are assumed to be orthogonal to each other. E(εdt+1, gt) = 0.

The Campbell and Shiller (1988) log linearized return identity (derived in appen-
dix A.1) may be written as :

rt+1 = κ+ ρpdt+1 + ∆dt+1 − pdt (7)

where pdt = E[log(PDt)], κ = log(1 + exp(pd))− ρpd and ρ = exp(pd)

1+exp(pd)
.

To study the dynamics of the price dividend ratio, the process may be written
with pdt being the subject of the formula:

pdt = κ+ ρpdt+1 + ∆dt+1 − rt+1
By replacing lagged iterated values of pdt+1in the equation, the process may be

written as :

pdt =
∞∑
i=0

ρiκ+ ρ∞pd∞ +
∞∑
i=1

ρi−1(∆dt+i − rt+i)

pdt =
κ

1− ρ + ρ∞pd∞ +
∞∑
i=1

ρi−1(∆dt+i − rt+i)

By iterating equation 7 and using assumptions 4 and 5 applying the expectations
operator, the functional form of the process can be written as :

pdt = A−B1(µt+1 − δ0) +B2(gt − γ0) (8)

The values of A,B1and B2 are specified in the next section.
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2.2 State Space Model

The state space model makes use of a transition equation and a measurement equa-
tion. The Kalman Filter best illustrates the dynamics of the series of µt and gt.The
two transition equations,are the demeaned form of equations 4 and 5:

ĝt+1 = γ1ĝt + εgt+1 (9)

µ̂t+1 = δ1µ̂t + εµt+1 (10)

The two measurement equations are given by :

∆dt+1 = γ0 + ĝt + εdt+1 (11)

pdt = A−B1µ̂t +B2ĝt (12)

Equation 11 is the equation linking the observed dividend growth rate to the state
variable of expected dividend growth. Equation 12 is the present value equation
linking price dividend to expected returns and expected dividend growth rate. It is
a generalization of equation 7, where A = κ

1−ρ + γ0−δ0
1−ρ , B1 = 1

1−ρδ1 and B2 = 1
1−ργ1

.

Equation 12 can be rearranged into 15 such that there are only two measurement
equations and only one state space equation.

ĝt+1 = γ1ĝt + εgt+1 (13)

∆dt+1 = γ0 + ĝt + εdt+1 (14)

pdt+1 = (1− δ1)A+B2(γ1 − δ1)ĝt + δ1pdt −B1εµt+1 +B2ε
g
t+1 (15)

Equation 13 defines the transition (state) equation. The measurement equations
are given by 14 and 15.

This can be put into a state space form as shown in appendix A.2. Since all
the equations are linear, we can implement the Kalman Filter and obtain the likeli-
hood which is maximized over the following vector of parameters. The likelihood is
optimized using the MaxBFGS procedure.

Θ = (γ0, δ0, γ1, δ1, σg, σµ, σD, ρgµ, ρgd, ρµd) (16)
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The filtered series for the expected dividend growth is just taken to be the first
element for the state vector Xt (Refer to appendix 2 for a more detailed explanation).
The expected dividend growth is derived from the state vector update. In the case
of the demeaned expected returns, the expected returns is defined as :

µ̂t−1 = B−11 (pdt − A−B2ĝt−1) (17)

3 Present Value assuming an ARFIMA(1,d,0)

3.1 Present Value

A general ARFIMA(p,d,q) process, xt can be written as

θ(L)(1− L)d(xt − x) = Θ(L)ηt (18)

where x is the mean of xt, d < |12 |, ηt is a Gaussian white noise process. Equation
18 can be written as an infinite polynomial process:

xt = x+
Θ(L)

θ(L)
(1− L)−dηt =

∞∑
j=0

θjηt−j (19)

The state space representation of such a process is documented in Hannan and
Deistler (1988) and Chan and Palma (1998).I derive the present value using
this framework based on assumption that the state variables (equations 9 and 10) are
an ARFIMA(1,d,0). Hence, the conditional expected returns and dividend growth
rate are modelled as mean reverting process as in equations 20.

µt = δ0 +G′Cµt, (20)
gt = γ0 +G′Cgt,

Equation 20 relates to the mean deviation of the expected returns and expected
dividend growth rate where δ0 and γ0 are scalars, G

′ = [1 0 0 ... ], and Cµt and Cgt
are infinite dimensional state vectors. The transition equations are:

Cµ,t+1 = FCµt + hµε
µ
t+1,

Cg,t+1 = FCgt + hgε
g
t+1,
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where is infinite dimensional matrix with elements

F =

 0 1 0 · · ·
0 0 1
...

. . .

 ,
and hµ and hg are infinite dimensional vectors with elements that are parameters
from the infinite moving average representation of the processes µt and gt:

hµ =


1
ϕµ1
ϕµ2
...

 , hµ =


1
ϕg1
ϕg2
...

 ,
such that

µt = δ0 + εµt + ϕµ1ε
µ
t−1 + ϕµ2ε

µ
t−2 + . . . ,

gt = γ0 + εgt + ϕg1ε
g
t−1 + ϕg2ε

g
t−2 + . . . .

εµt and ε
g
t can be correlated.

The log linearized return is:

rt+1 = κ+ ρpdt+1 = ∆dt+1 − pdt

with pd = E(pdt), κ = log(1 + exp(pd)) − ρpd, and ρ = exp(pd)

1+exp(pd)
. It can be shown

that
pdt = A+B′(Cgt − Cµt),

where

A =
κ+ γ0 − δ0

1− ρ
and

B =


1
ρ
ρ2

...

 .
Thus, in estimation we can use the measurement equation:

∆dt+1 = γ0 +G′Cgt + εdt+1
pdt = A+B′Cgt −B′Cµt

7



and the transition equations

Cg,t+1 = FCgt + hgε
g
t+1

Cµ,t+1 = FCµt + hµε
µ
t+1.

The optimizing vector is :

Θ = (γ0, δ0, γ1, δ1, σg, σµ, σD, ρgµ, ρgD, ρµD, dµ, dg) (21)

The expected returns is derived from the series of the filtered series with the
estimated paramaters :

µt = [gt − γ0 + δ0]−G′(B′)−1[pdt − A] (22)
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3.2 Kalman filter for the ARFIMA model.

In this section, the log likelihood function is derived after applying the Kalman filter
to the state and measurement equations of the previous section.

Lets define Xg,t+1 = Cgt and Xµ,t+1 = Cµt, so the transition equations are:

Xg,t+1 = FXgt + hgε
g
t ,

Xµ,t+1 = FXµt + hµε
µ
t .

and the measurement equations are:

∆dt = γ0 +G′Xgt + εdt ,

pdt = A+B′FXgt −B′FXµt +B′hgε
g
t −B′hµεµt .

In general notation the transition and measurement equations are

Xt+1 = FXt + Vt,

Yt = D +GXt +Wt,

where

F =

[
F 0
0 F

]
,

G =

[
G′ 0
B′F −B′F

]
,

D =

[
γ0
A

]
,

Vt =

[
hgε

g
t

hµε
µ
t

]
,

Wt =

[
εdt

B′hgε
g
t −B′hµεµt

]
,

where 0 is either infinite dimensional vector or matrix of zeros.
Also, lets define

Q =

[
hgh

′
gσ
2
g hgh

′
µρµgσµσg

hµh
′
gρµgσµσg hµh

′
µσ

2
µ

]
,

R =

[
σ2d B′hgρdgσdσg −B′hµρdµσdσµ

B′hgρdgσdσg −B′hµρdµσdσµ (B′hg)
2σ2g + (B′hµ)2σ2µ − 2B′hgB

′hµρµgσgσµ

]
,

S =

[
hgρdgσdσg hgB

′hgσ
2
g − hgB′hµρµgσµσg

hµρdµσdσµ hµB
′hgρµgσµσg − hµB′hµσ2µ

]
.
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Under initial condition:
X1 = 0,

the Kalman equations are:

∆t = GΩtG
′
+R

Θt = FΩtG
′
+ S

Ωt+1 = FΩtF
′
+Q−Θt∆

−1
t Θ′t

X̂t+1 = FX̂t + Θt∆
−1
t

(
Yt −D −GX̂t

)
The log likelihood function is then given by:

` = 2π−n

(
n∏
j=1

det ∆j

)−1/2
exp

(
−1

2

n∑
j=1

(
Yj − Ŷ

)′
∆−1j

(
Yj − Ŷ

))

with Ŷt = D +GX̂t.
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4 Results

4.1 Data

The optimization model makes use of earnings, dividend, price and consumption
data from 1926-2008. The data is retrieved from Robert Shiller’s website. The
returns series is derived by taking the log difference of the price series. Earnings and
Dividend growth are computed as the logarithm of the ratio of the observation at
time t+1 and at t.

4.2 Optimization of State Space Models

In this section, I present the results of the two models defined in the previous sections
for the sample period 1926-2008 and 1946-2008 for both the dividends and earnings.

Price Dividend Ratio/Dividend Growth
1926-2008 1946-2008

AR(1) ARFIMA(1,d,0) AR(1) ARFIMA(1,d,0)
Parameters PARAM SE PARAM SE PARAM SE PARAM SE
γ0 0.021 0.014 0.003 0.081 0.019 0.012 0.018 0.001
δ0 0.055 0.019 0.029 0.074 0.046 0.020 0.05 0.001
γ1 0.11 0.119 0.165 0.210 0.395 0.203 0.326 0.108
δ1 0.921 0.050 0.158 0.031 0.929 0.049 0.118 0.033
d1 − − 0.475 0.050 − − 0.457 0.606
σg 0.052 0.016 0.109 0.001 0.05 0.014 0.048 0.193
σµ 0.02 0.010 0.044 0.001 0.015 0.009 0.044 0.030
σd 0.092 0.055 0.007 0.001 0.014 0.040 0.007 0.043
ρgµ 0.576 0.088 0.212 0.001 0.62 0.126 0.345 0.494

ρµd −0.046 0.001 −0.166 0.001 −0.055 0.685 −0.002 0.250

Log-Likelihood −103.79 −110.45 −130.07 −126.83

Table 1:
Estimation of AR(1) and ARFIMA(1,d,0) model for dividend data.The parameters
optimized are from the previously defined parameter sets 16 (AR(1)) and 21 (ARFIMA(1,d,0))
over the two periods. The ‘d’parameter for the expected dividend growth process is set to zero.
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Price Earnings Ratio/ Earnings Growth
1926-2008 1946-2008

AR(1) ARFIMA(1,d,0) AR(1) ARFIMA(1,d,0)
Parameters PARAM SE PARAM SE PARAM SE PARAM SE
γ0 0.023 0.007 0.010 0.038 0.006 0.035 0.02 0.042
δ0 0.089 0.044 0.079 0.054 0.048 0.068 0.05 0.052
γ1 0.082 0.001 0.089 0.049 0.101 0.128 0.457 0.001
δ1 0.878 0.001 0.101 0.042 0.927 0.048 0.382 0.001
d1 − − 0.363 0.045 − − 0.499 0.001
σg 0.197 0.001 0.228 0.014 0.218 0.023 0.031 0.001
σµ 0.057 0.001 0.101 0.012 0.043 0.017 0.024 0.001
σe 0.116 0.001 0.184 0.020 0.016 0.110 0.045 0.001
ρgµ 0.87 0.001 0.829 0.065 0.929 0.043 0.237 0.001

ρµe 0.126 0.001 −0.198 0.069 −0.364 0.273 0.284 0.001

Log-Likelihood −35.27 −113.03 −39.99 −123.61

Table 2:
Estimation of AR(1) and ARFIMA(1,d,0) model for earnings data.In this table, the
measurement variables, price dividend ratio and dividend growth, are replaced by the price

earnings ratio and the earnings growth respectively.

According to the log likelihood value, the ARFIMA(1,d,0) tends to perform better
than the AR(1) except for the 1946-2008 dividend sample. Generally, the ARFIMA
model is superior when using earnings. The result is fairly simple to understand
within the present value framework. The price earnings ratio and the price dividend
ratio share a common level of persistence (i.e. an autoregression on the price dividend
ratio and price earnings ratio produces nearly the same autoregressive parameter).
However the observed dividend growth is much more persistent than earnings growth.
According to identity 12, the expected returns in earnings equations should have a
higher degree of persistence which is well suited to the ARFIMA(1,d,0).

The optimized results have the same near unit root properties as in KVB for
the autoregressive processes. The unit root is found in both samples with the price
dividend ratio and also when the price earnings ratio is used. Interestingly, the
memory component (d) is high in almost all four models. The short range component
(autoregressive part) of the ARFIMA tends to be lower. Dividend growth tends
to have the an equal short run parameter over both periods. The parameters of
the dividend growth equation changes only marginally as to the adoption of the
ARFIMA model. The sample 1946-2008 is associated with an equal improvement
in the autoregressive parameter for both expected dividend growth and expected
earnings growth.
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For both samples, the variation of the expected and realized dividend and earnings
growth rate tend to be higher than that of expected returns. The expected earnings
growth appears to vary much more than the dividend growth for both samples and
both models. The correlation between expected earnings growth and expected re-
turns tends to be stronger than that between dividend growth and expected returns.
Some of these findings can be confirmed from tables 6,7,8 and 9 in the appendix
documenting the descriptive features of the filtered series. The mean values of the
expected returns and expected dividend growth rate are close to the observed. The
1926-2008 earnings growth rate, however are exceptionally high. Interestingly, tests
of stationarity I(0) and non stationarity I(1) show that the AR(1) models tend to
be closer to being non-stationary, unlike ARFIMA models. The Robinson-Lobato
p-values show that upon the adoption of the ARFIMA model, the p-values signalling
rejection of fractional alternatives, tend to be lower than the AR(1) model, hence
putting the case forward for a fractional process.
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5 Robustness Checks

5.1 Robustness over time

Robustness checks were performed over the two samples on the derived expected
returns series. The ARFIMA(1,d,0) model is not robust, with regards to this time
discrepancy. However, this may be due to different regimes within the two samples
which lead to substantial variation in the ARFIMA process. Based on the latent
nature of the expected returns, a method to check for robustness is to see whether
expected returns across the different time periods exhibit high correlation. The
pairwise correlation are reported in tables 10 and 11. In the case of the AR(1), most
of the pair wise correlations are above 0.8. Both the price dividend ratio and the
price earnings ratio exhibit a 0.99 correlation over the two different sample sizes.

The ARFIMAmodel tends to exhibit low correlation over time. However, earnings
and dividend measures tend to demonstrate the same level of correlation in a specific
sample. It is clear that the 1929-36 depression may have had led to higher expected
returns. A Monte Carlo experiment was performed by using the same sample size
(87 observations) and a different regime where expected returns are set to be higher.
The Monte Carlo results,reported in table 12, show that the ARFIMA parameters
tend to exhibit a higher variance than the simple AR process. This may account
for the improper point estimation where the optimal point of the likelihood function
falls into a local optimum.

5.2 Univariate Models

In this section, the expected returns and expected dividend (earnings) growth rates
are modeled according to their initial exogenously determined econometric specifi-
cations. The statistical properties presented before were when expected returns was
modeled jointly with the dynamics of dividend (earnings) growth and the price divi-
dend (earnings) ratio. We present the results for the series for the individual samples
in tables 13,15,14 and 16 in the appendix.

The results show that the ARFIMA tends to perform worse than the AR(1) in
the case of the expected returns (tables 13 and 15). The memory parameters tend
to be unstable in both specifications of the autoregressive process. The ARFIMA
tends to generally display a lower R-squared. The best ARFIMA model is from the
use of the earnings data for the sample 1946-2008. One advantage of the ARFIMA
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model is that it removes dependence in the residual and reduces the ARCH effects.
Interestingly, the univariate models for the dividend and earnings growth show more
promise for the ARFIMA model. The linear fit of the model is improved greatly and
the models are free from any serial correlation and conditional heteroscedasticity.
The good fit of the model is perfectly clear within the present value approach. A
lower fit in either the dividend growth rate or expected returns would improve the fit
of the other variable, so that the persistence in the price dividend ratio is restored.

5.3 Tests of Persistence and Time variation

In the following section, we detail some of the tests that were performed on the
new series. First we test whether the expected returns is a long memory process
(i.e. d>0). In terms of the definition of ‘persistence’, this is the strong form case.
Secondly, we test the weaker form of persistence, where the autoregressive coeffi cient
and the ‘d’parameter are set to zero. The same test may be applied to the expected
dividend growth series, which involves looking at the autoregressive coeffi cient only.
We also test for time variation in expected returns and expected dividend (earnings)
growth rate. The null hypothesis in this case is that each autoregressive parameter
and the standard error are equal to zero.
The tests involve computing the likelihood ratio under alternative (L1) and the

null (L0), and the following likelihood ratio test is applied:

LR = 2(L1 − L0)
The likelihood ratio is distributed as χ2(k) where k represents the number of

restrictions.
The tests are performed exclusively on the ARFIMA(1,d,0) specification and are

reported in table 3.

Null Hypotheses 1926-2008 PD 1946-2008 PD 1926-2008 PE 1946-2008 PE
Memory d = 0 3368 2155 623.49 2690
Persistence Tests:
H0 : δ1 = d = 0 6478 3465 579 4153
H0 : γ1 = 0 22 12 14 458

Time Variation tests:
H0 : δ1 = d = σµ = 0 17507 61797 317 4919
H0 : γ1 = σg = 0 1070 1806 130 684

Table 3:
Tests on Time Variation and Persistence.
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The number of parameters in the system implies that the log likelihood test tends
to vary across the different samples and the different measure of the leverage variable.
However the results clearly demonstrate that the null hypothesis is being rejected.
in all cases. Expected returns do appear to exhibit long memory. There appears to
be persistence in both the filtered returns and filtered dividend growth rate series.
However the former exhibits a higher statistic close to the rejection of the null,
implying that there is a higher degree of persistence. The expected returns series
shows that there is enough joint evidence of a non zero d and the autoregressive
parameter δ1. Tests for time variation show that both the expected returns and
dividend growth rate tend to vary over time. However a naive comparison of the test
statistic shows that expected returns exhibit more variation over time.

6 Applications

In this section, we provide three applications for the filtered returns and dividend
(earnings) series. In the first application, we test for insample predictability. In
this setting the filtered series are regressed on the realized values and the accuracy
is measured by the R-squared. In the second application, we look at the effect of
expected returns (as a proxy for discount rates) on consumption and consumption
growth. Lastly, we test whether a trading strategy may be implemented by looking
whether prices revert to their present value. We use the series for expected returns
and expected dividend (earnings) growth to construct the present value.

6.1 Insample Predictability

The insample predictability of the realized series by the filtered series is reported
in the tables 4 and 5. The following forecasting equations were run in the case of
realized values of returns and dividend growth:

rt = φo + φ1µ
AR
t−1 + εt

rt = φo + φ1µ
ARFIMA
t−1 + εt

rt = φo + φ1pdt−1 + εt
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∆dt = φo + φ1g
AR
t−1 + εt

∆dt = φo + φ1g
ARFIMA
t−1 + εt

∆dt = φo + φ1pdt−1 + εt

AR(1) ARFIMA(1,d.0) pdt−1/pet−1
1926-2008 PD 0.049 0.015 0.050
1946-2008 PD 0.101 0.088 0.066
1926-2008 PE 0.042 0.002 0.055
1946-2008 PE 0.072 0.079 0.090

Table 4:
Goodness of fit for the returns equation. The figures in the table show the respective

R-squared from each regressor.

For the dividend growth the following functional models were assumed:

AR(1) ARFIMA(1,d.0) pdt−1/pet−1
1926-2008 PD 0.020 0.01 0.002
1946-2008 PD 0.015 0.026 0.008
1926-2008 PE 0.014 0 0.001
1946-2008 PE 0.027 0.081 0.002

Table 5:
Goodness of Fit for the dividend(earnings) growth equation

Returns are better forecast by the price dividend and price earnings ratio. The
expected returns are marginally weaker than the ratios. The autoregressive process
tends to work for the 1946 sample. A higher level of predictability is noticed for
the period, 1946-2008. There is no apparent predictability for the expected dividend
growth rate. The ARFIMA model performs relatively well for the sample 1946-2008
for the price earnings ratio.

6.2 Consumption and Expected Returns

The second application of both series is to see the reaction of consumption growth
to a shock in expected returns. There is a wide theoretical literature linking the
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time series properties of consumption and discount rates (See Campbell (2003) and
Cochrane (2010) for an overview). Consumption and discount rates are counter
cyclical to each other. When discount rates (expected returns) are low, consumption
is high. To test this relationship, a simple regression regressing expected returns on
logarithm of consumption.

lnCt = α + βµt + vt (23)

We also produced the impulse response for a first order vector autoregression
model, with consumption growth (defined as ∆Ct ) and expected returns as the
endogenous variables.

Yt = A+BYt−1 + vt

where Yt = [∆Ct µt]
′, α = [α1 α2]

′, B =

[
β1 β2
β3 β4

]
, vt =

[
v1t
v2t

]
The above system is estimated and impulse response functions are plotted as a

result to the expected returns process. The result from equation 23 resulted in a
negative relationship between consumption and expected returns. The parameters
range from -3.51 to the extreme case of -8.13. No definite distinction between ex-
pected returns under the ARFIMA(1,d,0) and AR(1) was found.

The impulse response functions (plots 6.2 and 6.2) show that there is a higher
persistence in consumption growth after a shock to the AR(1) expected returns. The
expected return series from the ARFIMA model has already accounted for the long
memory components and as such, shocks are damped after each lag. This modest
finding may be reconciled with business cycle theories, where the frequency of a cycle
is shown to be four years.
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Figure 6.2:Impulse Response for Consumption Growth based on Expected Returns-
AR(1)

Figure 6.3: Impulse Response function for Consumption growth based on a shock in
expected returns.- ARFIMA(1,d,0)
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6.3 A Real-Time Trading Strategy

In this section, an application of the expected returns and expected dividend growth
rate series is provided. I test whether a profitable trading strategy may be imple-
mented by identifying whether the stock market is underpriced or overpriced. The
trading strategy is an all long strategy with the choice of either going long in bonds
or the equity index. If the market is overpriced, reversion towards fundamental value
will imply that price will fall in the following period(s), leading to a potential capital
loss if equity index is held. In this case, the trading rule is to go long on treasury
bills. Likewise, if the equity index is underpriced, reversion to the fundamental value
implies that there would be an increase in the price and therefore implying a positive
return.

The present value is computed in real-time using the values of the derived series.
As a measure of comparison, the present value is computed using the previous period
realized values.Tthe trading strategy is compared against the Buy and Hold. Two
versions of the present value is assumed. The first model of the present value is
the Gordon Dividend Growth model, which assumes that the dividend growth rate
is constant. The second present value is the discounted next period dividend and
price. The expected future price is proxied by the present price, given the random
walk nature of the price.

PV 1AR =
Dt(1 + gARt )

µARt − gARt
(Model 1)

PV 1ARFIMA =
Dt(1 + gARFIMA

t )

µARFIMA
t − gARFIMA

t

(Model 2)

PV 2AR =
Dt(1 + gARt ) + Pt

µARt + 1
(Model 3)

PV 2ARFIMA =
Dt(1 + gARFIMA

t ) + Pt
µARFIMA
t + 1

(Model 4)

PV R =
Dt(1 + ∆dt) + Pt

rt + 1
(Model 5)

The cumulated returns from the trading strategy (using the present value) are
plotted for the respective time period and payoff variable. The results are reported
in the appendix. Based on the four time periods, the Buy and Hold strategy tends
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to beat the trading strategy. The only exception comes from the price earnings
optimization problem for the period 1946-2008 where the ARFIMA model tends to
beat the Buy and Hold over the whole period. However, it is worth mentioning
that the graphical plots do not do justice to the proper performance of the trading
strategy since a high market return in one period may bias the Buy and Hold strategy
towards having a higher accumulated return than the trading strategy. In such a
circumstance, we report a measure based on the binary outcome of whether the rule
advised going towards the highest return between treasury bills and the equity index.
We report the percentage of times each model was successful.

1926-2008 PD 1926-2008 PE 1946-2008 PD 1946-2008 PE
Model 1 0.37 0.53 0.41 0.55
Model 2 0.35 0.46 0.40 0.66
Model 3 0.36 0.30 0.38 0.46
Model 4 0.47 0.57 0.24 0.60
Model 5 0.42 0.47 0.46 0.51
Buy and Hold 0.69 0.69 0.71 0.71

Interestingly in the binary measure case, none of the trading strategies manage
to beat the Buy and Hold. However, compared to the graphical plots the strategies
do not perform as badly. There is no definite winner in terms of the present value
formulation adopted. Both versions of the present value tend to perform well for
the different time periods involved. This finding of non-robustness may be due to
the presence of breaks or regime switches, which invalidate the constant dividend
growth theory. The ARFIMA models appears to work better than the autoregres-
sive models. The interesting phenomenon is that the ARFIMA, by accounting for
hyperbolic decay, is a smoother series, implying that unless there are huge changes
in the dividend growth and realized dividends, the present value will be a smooth
function over time. In such a case, it may be likely, that the ARFIMA performs
better than the AR models because of its ability to capture smoother business cycle
transition over time.

7 Conclusion

In this paper, it was found that the time series of annual expected returns exhibit
long memory. Taking into account the nature of the process, the fractional process
removes the components associated with long memory, and hence to exhibit lower
serial correlation. However the results from the ARFIMA are not robust across time
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and it is suspected that regime switches across the two different sample adopted might
be the cause. This finding has been backed by a small Monte Carlo experiment with
two regimes. The univariate specifications of the expected returns series also show
that the AR(1) fares better than the ARFIMA (1,d,0).

The filtered series was used in three simple applications namely in evaluating
return predictability, assessing the relationship between consumption growth and
discount rate and lastly in a market timing strategy. In terms of predictability of
returns, both the AR(1) and ARFIMA(1,d,0) have equal power in predicting returns,
although it is marginally lower than valuation rations. However the filtered series
have stronger forecasting power for dividend and earnings growth rate. Consump-
tion and expected returns was found to be negatively related and a simple impulse
response function showed that the effect of a shock in the discount rate may last
until four years on consumption growth. The results on the trading rule is that it is
impossible to jointly build a mean reverting strategy by identify the over or under
pricing of the equity market exante. Such a strategy performs poorly against the
buy and hold.

The paper draws out many lines of research for the future. The most obvious
area to consider is the possibility of different regimes within the specification of
the expected returns equations. The filtered series may have power against the
AR(1) and ARFIMA(1,d,0) process. In this study, the applications involved simple
predictability of returns. It might be interesting to see if forecast long horizon returns
from the filtered series may overtake the valuation ratios, which will cumulates noise
emanating from the dividend (earnings) growth. Moreover, we can extend the time
series framework to the cross sectional cost of capital approach for different industries
and firms. The present value may then be compared to the risk based measures to
compute the discount factor.
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A The Present Value Model.

Equations 1 , 2 and 3 are shown again:

rt = log(
Pt+1 +Dt+1

Pt
) (24)

PDt =
Pt
Dt

(25)

∆dt+1 = log(
Dt+1

Dt

) (26)

The return process can be written as

rt = log((
Pt+1 +Dt+1

Pt
).
Dt

Dt

.
Dt+1

Dt+1

)

log((
Pt+1Dt +Dt+1Dt

PtDt+1

).
Dt+1

Dt

) (27)

log((
Dt

Pt
.
Pt+1
Dt+1

+
Dt

Pt
).
Dt+1

Dt

) (28)

log((
Pt+1
Dt+1

+ 1)
Dt+1

Dt

.
Dt

Pt
) (29)

log(1 + epdt+1)) + ∆dt+1 − pdt (30)

Assuming the log linearization of Campbell and Shiller (1988) the returns can be
written as

rt ' log((1 + epdt+1)) +
exp(pd)

1 + exp(pd)
+ ∆dt+1 − pdt

rt = κ+ ρpdt+1 + ∆dt+1 − pdt
where κ = log((1 + epdt+1)) and ρ = exp(pd)

1+exp(pd)

Hence,
pdt = κ+ ρpdt+1 + ∆dt+1 − rt+1
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B State Space Model assuming AR(1)

In this section I reproduce the Filtering employed in KVB.
There are two transition equations, one governing the dividend growth rate and

the other one governing the mean return:

ĝt+1 = γ1ĝt + εgt+1 (31)

µ̂t+1 = δ1µ̂t + εµt+1 (32)

the two measurement equations are given by :

∆dt+1 = γ0 + ĝt + εdt+1 (33)

pdt = A−Bµ̂t +Bĝt (34)

Equation 10 can be rearranged into 12 such that there are only two measurement
equations and only one state space model.

ĝt+1 = γ1ĝt + εgt+1 (35)

∆dt+1 = γ0 + ĝt + εdt+1 (36)

pdt+1 = (1− δ1)A−B2(γ1 − δ1)ĝt + δ1pdt −B1εµt+1 +B2ε
g
t+1 (37)

Equation 13 defines the transition (state) equation. The measurement equation
relates the observable variable to the unobserved variables. In our case this is given
by equation 14 and 15. A is equal to κ

1−ρ + γ0−δ0
1−ρ , B1 = 1

1−ρδ1 , B2 = 1
1−ργ1

.

The state equation is defined by :

Xt+1 = FXt +Rεt

Yt = M0 +M1Yt−1 +M2Xt

where Yt =

[
∆dt
pdt

]
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The variables of the transition equation are Xtand εxt+1and are made up of the
following elements:

Xt =


ĝt−1
εDt
εgt
εµt

 F =


γ1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 R =


0 0 0
1 0 0
0 1 0
0 0 1


εxt+1 =

εDt+1εgt+1
εµt+1


The parameters of the measurement equation include parameters of the present

value model to be estimated. These are defined as :

M0 =

[
γ0

(1− δ1) ∗ A

]
M1 =

[
0 0
0 δ1

]
M2 =

[
1 1 0 0

B2(γ1 − δ1) 0 B2 −B1

]
The variance covariance matrix from the state space model is given by :

Σ = var

εgt+1εµt+1
εdt+1

 =

 σ2g σgµ σgd
σgµ σ2µ σDµ
σgd σDµ σ2D



X0|0 = E[X0]

P0|0 = E[XtX
′
t]

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +RΣR′

ηt = Yt −M0 −M1Yt−1 −M2Xt|t−1

St = M2Pt|t−1M
′
2

Kt = Pt|t−1M
′
2S
−1
t

Xt|t = Xt|t−1 +Ktηt
Pt|t = (I −KtM2)Pt|t−1

C Statistical properties of Expected Returns and Growth

C.1 Expected Returns

The statistical properties of expected returns are reported in this section. It presents
a first pass misspecification test as to the adequacy of the ARFIMA model. The
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following tables report both the usual moments of each series under both models as
well as some stationarity and nonstationarity tests.

Price Dividend Ratio/Dividend Growth
1926-2008 1946-2008

AR(1) ARFIMA(1,d,0) rt AR(1) ARFIMA(1,d,0) rt
Mean 0.062 0.064 0.080 0.063 0.065 0.073
Std. Dev 0.049 0.054 0.195 0.045 0.036 0.169
Kurtosis 3.310 3.49 2.944 3.309 4.282 3.090
Test of I(0)
Robinson-Lobato −0.075 1.152 −0.599 − −0.484 0.208
P-value 0.524 0.125 0.726 − 0.686 0.42
KPSS 1.378 0.583 0.073 0.251 0.037 0.080
P-value 0.3 0.025 1 1 1 1
Test of I(1)
ADF test −1.11 −4.63 −8.49 −1.214 −2.672 −6.733
P-value 0.9 0.01 0.01 0.9 0.1 0.01
Phillips-Perron −1.61 −5.81 −8.58 −1.331 −2.800 −6.823
P-value 0.9 0.01 0.01 0.9 0.1 0.01

Table 6:
Descriptive Statistics and Stationarity tests on the Expected Returns series for Div-
idend series. The stationarity tests are distinct from each other based on the null hypothesis.
Tests of I(0) assume that the null hypothesis is in fact a stationary series. In the case of the
Robinson-Lobato(1998) test, the alternative is a fractional process. Tests of I(1).are tests with null
hypothesis being a an integrated series of I(1). For the I(0) and I(1) tests, the reported p-values
are the rejection regions where the test statistic lies.
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Price Earnings Ratio/Earnings growth
1926-2008 1946-2008

AR(1) ARFIMA(1,d,0) rt AR(1) ARFIMA(1,d,0) rt
Mean 0.087 0.081 0.080 0.096 0.060 0.073
Std. Dev 0.079 0.036 0.195 0.064 0.034 0.169
Kurtosis 4.691 3.608 2.944 4.297 4.069 3.090
Test of I(0)
Robinson-Lobato Test −0.120 0.537 −0.599 −0.299 −0.139 0.208
P-value 0.548 0.295 0.726 0.618 0.592 0.42
KPSS test 0.457 0.129 0.073 0.576 0.549 0.080
P-value 0.1 1 1 0.025 0.05 1
Test of I(1)
ADF test −1.009 −4.46 −8.49 −0.953 −1.700 −6.733
P-value 0.9 0.01 0.01 0.9 0.9 0.01
Phillips-Perron −2.66 −4.53 −8.58 −2.207 −2.053 −6.823
P-value 0.1 0.01 0.01 0.9 0.9 0.01

Table 7:
Descriptive Statistics and Stationarity tests on the Expected Returns series using
Earnings data. The resulting statistical features of the expected returns are from the optimization
model with the price earnings and earnings growth.
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C.2 Statistical properties of Expected Dividend Growth

The expected dividend growth properties are presented in the following tables.

Price Dividend Ratio/ Dividend Growth
1926-2008 1946-2008

AR(1) ARFIMA(1,d,0) ∆dt AR(1) ARFIMA(1,d,0) ∆dt
Mean 0.021 0.018 0.017 0.020 0.032 0.021
Std. Dev 0.017 0.045 0.106 0.029 0.023 0.055
Kurtosis 3.175 5.49 10.06 5.773 2.687 5.132
Test of I(0)
Robinson-Lobato Test −0.498 −0.294 0.793 0.246 0.723 0.719
P-value 0.691 0.616 0.786 0.403 0.235 0.236
KPSS test 0.322 0.069 0.034 0.066 0.147 0.113
P-value 1 1 1 1 1 1
Test of I(1)
ADF test −5.958 −6.582 −7.471 −5.158 −3.289 −4.811
P-value 0.01 0.01 0.01 0.01 0.025 0.01
Phillips-Perron −8.167 −7.42 −7.474 −5.243 −3.344 4.887
P-value 0.01 0.01 0.01 0.01 0.025 0.01

Table 8:
Descriptive Statistics and Stationarity tests on the Expected Dividend Growth rate.
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Price Earnings Ratio/ Earnings growth
1926-2008 1946-2008

AR(1) ARFIMA(1,d,0) ∆et AR(1) ARFIMA(1,d,0) ∆et
Mean 0.087 0.081 0.007 0.012 0.024 0.013
Std.Dev 0.079 0.036 0.226 0.069 0.012 0.217
Kurtosis 4.69 3.574 6.613 6.238 4.451 8.899
Test of I(0)
Robinson-LobatoTest −0.119 0.515 −1.395 −0.498 0.165 −1.536
P-value 0.548 0.303 0.918 0.691 0.434 0.938
KPSS test 0.159 0.013 0.049 0.122 0.093 0.152
P-value 1 1 1 1 1 1
Test of I(1)
ADF test −2.213 −4.463 −6.486 −4.739 −2.761 −4.698
P-value 0.9 0.01 0.01 0.01 0.1 0.01
Phillips-Perron −2.66 −4.532 −6.506 −7.327 −3.708 −5.034
P-value 0.05 0.01 0.01 0.01 0.01 0.01

Table 9:
Descriptive Statistics and Stationarity tests on the Expected Earnings Growth rate.
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D Robustness checks

D.1 Correlation over time

The following tables report the correlation coeffi cient of the different series for both
the autoregressive and fractionally autoregressive series over the different samples.

µPD,It µPE,It µPD,IIt µPE,IIt

µPD,It 1 0.85 0.99 0.84

µPE,It 0.85 1 0.85 0.99

µPD,IIt 0.99 0.85 1 0.85

µPE,IIt 0.84 0.99 0.85 1

Table 10:
Correlation of the Expected Returns from AR(1) specification. The above shows the corre-
lation coeffi cient from the expected returns from the dividend (pd) and earnings (pe) specifications.
The first period (I) denotes the sample period 1926-2008, while the second period(II)

µPD,It µPE,It µPD,IIt µPE,IIt

µPD,It 1 0.88 0.56 0.34

µPE,It 0.88 1 0.26 0.04

µPD,IIt 0.56 0.26 1 0.85

µPE,IIt 0.34 0.04 0.85 1

Table 11:
Correlation of the Expected Returns from ARFIMA(1,d,0) specifications.

D.2 Monte Carlo Estimation in the presence of regimes

Compared to the expected returns, the monthly expected dividend and earnings
growth rate (tables 8, 9 and Model 3) show no major higher unconditional mean
than the realized values. However, for the annual frequency, a higher unconditional
mean is witnessed. The stationarity and non stationarity tests depict the dividend
growth as I(0) as expected. Observed earnings growth is nonstationary as shown
by the I(0) and I(1) tests in the third column of table 9.This is due to the end of
sample structural break which occurs in the last three months of 2008. When these
observations are discarded, the series is I(0).
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Mean SD Skewness Kurtosis
Intercept 0.06 0.41 −0.36 8.39

AR1 0.84 0.10 −3.48 25.7

Intercept −1.46 6.78 0.20 17.9
ARFIMA d 0.47 0.49 −0.08 1.33

AR1 0.39 0.44 −0.01 1.31

Table 12:
Monte Carlo Experiment for 2 regimes with 83 observations. In the following experiment,a
two regime switching.model is set up, with regime 1 having an AR(1) process with 0.06 as intercept
term and an autoregressive coeffi cient of 0.9. The second regime has an autoregressive coeffi cient
of 0.8 with an intercept term of 0.09.

D.3 Univariate Models
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1926-2008 1946-2008
AR(1) ARFIMA(1,d,0) AR(1) ARFIMA(1,d,0)

Coeff p-val Coeff p-val Coeff p -val Coeff p -val
Intercept 0.002 0.5 0.201 0 0.003 0.48 0.027 0
AR(1) 0.94 0 −0.221 0 0.943 0 0.937 0
ARFIMA(d) 0.541 0 −0.123 0.05
Goodness of Fit 0.87 0.194 0.87 0.651
Autocorrelation 4.766 0.44 4.135 0.53 4.29 0.51 4.742 0.45
Neglected ARCH 17.02 0 16.51 0 14.01 0.02 9.156 0.103
NH - Joint Parameters 0.554 1 1.265 0.05 0.717 0.2 1.07 0.1
NH - conditional variance 0.242 1 0.860 0.01 0.447 0.075 0.78 0.01
NH - Intercept 0.244 0.2 0.038 0.01 0.295 0.2 0.128 1
NH - Ar1 0.061 1 0.111 1 0.129 1 0.128 1
NH - d 0.155 1 0.209 1

Table 13:
Univariate regressions on Expected Returns sample using Price Dividend and Dividend
Growth Specification. The specification for the AR(1) model is (1−ϕ1L)µ

AR(1)
t = ϕ0+ ηt. For

the ARFIMA model, the specification is :(1− ϕ1L)d = ϕ0 + ηt.NH stands for the Nyblom-Hansen
test which tests whether there are excessive variation in the estimated parameters. Neglected ARCH
is a first pass misspecification test of conditional heteroscedasticity in the model.

33



1926-2008 1946-2008
AR(1) ARFIMA(1,d,0) AR(1) ARFIMA(1,d,0)

Coeff p -val Coeff p -val Coeff p -val Coeff p -val
Constant 0.011 0.42 0.081 0 0.012 0.44 0.020 0.07
AR(1) 0.834 0. 0.804 0 0.851 0 1.050 0
ARFIMA(d) −0.272 0.24 −0.111 0.01
Goodness of Fit 0.61 0.364 0.622 0.851
Autocorrelation 8.86 0.11 3.22 0.67 14.88 0.25 5.112 0.402
ARCH 38.43 0 4.303 0.507 11.49 0.49 5.098 0.404
NH - Joint Parameters 0.823 0.2 0.925 0.2 1.127 0.05 0.968 0.2
NH - conditional variance 0.501 0.05 0.593 0.05 0.547 0.05 0.467 0.075
NH - Intercept 0.295 0.2 0.102 1 0.444 0.075 0.147 1
NH - Ar1 0.203 1 0.049 1 0.585 0.05 0.142 1
NH- d 0.051 1 0.212 1

Table 14:
Univariate regressions on Expected Returns 1946-2008
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1926-2008 1946-2008
AR(1) ARFIMA(1,d,0) AR(1) ARFIMA(1,d,0)

Coeff p -val Coeff p -val Coeff p -val Coeff p -val
Constant 0.018 0 0.015 0.01 0.012 0 0.010 0
AR(1) 0.100 0.46 0.191 0 0.382 0.05 0.695 0
Goodness of Fit 0.01 0.036 0.145 0.484
Autocorrelation 4.157 0.527 3.852 0.571 3.619 0.61 6.156 0.291
ARCH 6.437 0.266 15.32 0 39.86 0 10.49 0.062
NH- Joint Parameters 0.871 0.1 1.154 0.05 1.063 0.05 1.040 0.05
NH- conditional variance 0.704 0.025 0.927 0.01 0.927 0.01 0.769 0.01
NH - Intercept 0.287 0.2 0.051 1 0.110 1 0.280 0.2
NH - Ar1 0.116 1 0.067 1 0.074 1 0.331 0.2

Table 15:
Univariate regressions on Dividend Growth 1926-2008

Monthly Annually
AR(1) ARFIMA(1,d,0) AR(1) ARFIMA(1,d,0)

Coeff p -val Coeff p -val Coeff p -val Coeff p -val
Constant 0.021 0 0.018 0.12 0.011 0.21 0.025 0
AR(1) −0.024 0.86 0.601 0 0.042 0.82 0.683 0
Goodness of Fit 0.001 0.359 0.002 0.467
Autocorrelation 3.627 0.46 5.380 0.25 4.022 0.55 8.2406 0.14
ARCH 3.460 0.48 3.215 0.52 4.78 0.44 21.5726 0.
NH- Joint Parameters 0.410 1 0.669 1 0.597 1 0.955 0.07
NH- conditional variance 0.266 0.2 0.289 0.2 0.401 0.07 0.843
NH - Intercept 0.060 1 0.267 0.2 0.094 1 0.071 1
NH - Ar1 0.058 1 0.293 0.2 0.015 1 0.068 1

Table 16:
Univariate regressions on Expected Dividend Growth 1946-2008
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E Graphical Plots

E.1 Expected Return

Plot of Expected Returns for AR(1) and ARFIMA(1,d,0) and Realized
Returns for 1946-2008 using dividend data.

Plot of Expected Returns for AR(1) and ARFIMA(1,d,0) and Realized
Returns for 1926-2008 using dividend data.
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Plot of Expected Returns for AR(1) and ARFIMA(1,d,0) and Realized
Returns for 1926-2008 using earnings growth.

Plot of Expected Returns for AR(1) and ARFIMA(1,d,0) and Realized
Returns for 1946-2008 using earnings data.
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E.2 Dividend and Earnings growth

Plot of Dividend Growth for AR(1) and ARFIMA(1,d,0) and Realized
Returns for 1946-2008 using earnings growth.

Plot of Dividend Growth for AR(1) and ARFIMA(1,d,0) and Realized
Returns for 1926-2008 using earnings growth.
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Plot of Earnings Growth for AR(1) and ARFIMA(1,d,0) and Realized
Returns for 1926-2008 using earnings growth.

Plot of Earnings Growth for AR(1) and ARFIMA(1,d,0) and Realized
Returns for 1946-2008 using earnings growth.
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F Plot of Trading Returns

Cummulated Returns based on the the price dividend ratio for the
sample 1926-2008.

Cummulative Returns under different strategies based on the price
earnings ratio 1926-2008
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Cummulated Returns for the period 1946-2008 using the price dividend
ratio.
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